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The branching patterns formed as a result of crack growth in dimethacrylate resins below 
their glass transition temperatures looked similar to fractal trees. The skeletons of the 
patterns were analysed numerically for their topological and geometrical properties. The 
number of branches, Ni, mean branch lengths, L;, and branch angles of a particular order, 
defined according to the Strahler and inverted Weibel schemes, followed exponential 
scaling behaviour: N~ ~ (FIB) -z and L~ ~ (RL) ~. Using the relationship for the fractal dimension 
D= In RB/In RL, a value of D= 1.4was obtained for the fracture pattern. Fractal behaviour was 
also examined by the box-counting method which indicated a power-law dependence of the 
mass on the box size with fractal dimension exponent D--1.4 in the case of the fracture 
pattern. However, the mass-shell method for both the fracture pattern and the fractal trees 
gave an exponential increase of mass with distance from the origin, rather than the 
power-law behaviour expected for fractals. This was attributed to the fact that branches of 
different sizes were distributed in restricted regions of space closer to the periphery, rather 
than uniformly over the whole pattern. 

1. Introduction 
It has long been known that materials that fracture in 
a nominally brittle manner exhibit plastic deformation 
at the crack tip and do not behave as ideal elastic 
brittle solids [1]. Fracture in these materials produces 
a wide range of surface morphologies. Patterns, such 
as regular arrays of parallel lines and branching 
patterns, in the crack plane, have been observed in 
thermoset resins (phenol-formaldehyde, unsaturated 
polyesters, cross-linked polymethylmethacrylate, ep- 
oxide resins, polyethylene glycol dimethacrylate 
doped with polymethylmethacrylate) and in uncross- 
linked polymers (polymethylmethacrylate, low-den- 
sity polyethylene) fractured using a variety of loading 
conditions [2-4]. These features have been referred to 
as "river markings", "finger-like furrows", "striations" 
and "welts". Tree-like patterns have also been ob- 
served in the fracture surfaces of metallic glasses and 
brittle solids such as crystals of Cu2Mg [5, 6]. 

Many other naturally occurring patterns, such as 
river networks, vascular systems, lungs etc., have tree- 
like structure and these have been described by vari- 
ous ordering schemes [7 10] for which exponential 
scaling behaviour of relevant branch properties (such 
as length, width and number of branches) has been 

observed. This implies that the ratios between proper- 
ties for subsequent branch orders (the bifurcation or 
length ratios) are constant. Recently, diffusion-limited 
clusters and viscous fingering patterns have also been 
characterized using ordering schemes for their 
branches [11-13], and it was found here too that 
branch properties (number, mass,-length and width) 
depended exponentially on branch order. 

A recent approach to the understanding of fracture 
phenomena is the fractal characterization [14-16] of 
the morphologies of fracture surfaces. This method 
provides a quantitative, systematic approach to the 
characterization of complex disordered structures. 
For these systems, the dependence of an appropriate 
measure (mass, area, etc.) on linear dimension can be 
described by a power-law dependence with a non- 
integer fractal dimension exponent, D, which is smaller 
than the Euclidean dimension of the structure. Com- 
puter models using Monte Carlo methods [17, 18] 
have been used to reproduce these characteristic frac- 
ture patterns. DLA [19] is the leading model of fractal 
growth [-15,16,20] and many two-dimensional 
growth processes exhibit regimes in which the ob- 
served patterns resemble DLA clusters with D ~ 1.7 
[20]. A modified DLA model [21,221 has been used 
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to describe dielectric breakdown and viscous fingering 
(fluid-fluid displacement), phenomena which can be 
considered to be primitive model systems for fracture. 
Viscous fingering patterns (in model systems) have 
been shown to exhibit behaviour ranging from that 
typical of DLA at low pressure to that of non-fractal 
dense branching morphologies at higher pressures 
[23, 24]. 

In very general terms, fractals are structures or 
shapes that have the same degree of complexity on 
different length scales; i.e. the structures appear self- 
similar under different magnifications. The most 
simple types of fractals, homogeneous self-similar frac- 
tals, are those invariant to an isotropic change of 
length scales. In some other cases, the fractal structure 
is invarient to an "affine" transformation [14-16, 
25, 26] in which the length scale is changed by differ- 
ent factors in different directions. Many objects in 
nature can be represented by random fractals that are 
self-similar or self-affine structures in a statistical 
sense; their geometrical properties and distribution 
functions exhibit scaling laws on different length scales 
only when averaged over many samples. Deterministic 
fractals, such as Koch curves, Cantor sets and 
Sierpinski gaskets, are obtained by defining a math- 
ematical initiator and generator from which the self- 
similar fractal structure is generated. Similarly, fractal 
trees can be formed by specific rules, forming a class of 
deterministic, self-similar, non-uniform fractals 
[14, 27]. These trees have relevance for the present 
work because of the similarity in appearance between 
these structures and the patterns obtained from the 
fracture surfaces. 

It was the purpose of this work to characterize 
quantitatively the branched Structures produced in 
the fracture surface of a highly cross-linked 
ethoxylated bisphenol A dimethacrylate resin, in the 
hope that the statistical characteristics of the patterns 
may eventually provide insight on the failure mecha- 
nisms in brittle materials. In particular, the topologi- 
cal, geometrical and fractal properties of the two- 
dimensional fracture patterns have been characterized 
using scaling concepts and fractal geometry. These 
patterns will be compared with fractal trees formed 
according to well-defined growth rules for which scal- 
ing behaviour of relevant branch properties is estab- 
lished by definition [14]. 

2. Experimental procedure 
2.1. M a t e r i a l s  
Samples of ethoxylated bisphenol-A dimethacrylate 
(EBPADMA) monomer (ESSCHEM Co.) inhibited 
with 100 p.p.m, hydroquinone, were heat cured using 
1% benzoyl peroxide (Aldrich Chemicals) as initiator. 
The degree of conversion was determined to be 90% 
by Fourier transform-Raman spectroscopy [28]. The 
sample was below its glass transition temperature, 
determined to be 123 ~ using the loss modulus curve 
and 180 ~ using the tan 8 peak from dynamic mech- 
anical analysis. Samples to be fractured were cut with 
a diamond saw from the original cylindrical shape 
into discs 5 mm thick and 6 mm diameter. 

Indentor 

4 6mm " 

-) 

1 a m  

L Fracture 
surface 

Figure 1 Schematic drawing of the loading geometry and the frac- 
tured specimen. A 1 mm spherical indentor is applied to surface A to 
produce the fractured specimen. The fracture surface, C, contains 
the characteristic branched structures and nearly parallel striations. 
The edge between the perpendicular surfaces A and C is marked 
B and these labels are used in order to help identify these regions in 
the real fracture pattern. 

2.2. Specimen preparation and fractography 
The ethoxylatedbisphenol-A dimethacrylate resins 
were fractured using a 1 mm indentor. An MTS mech- 
anical tester operating at 50 Hz, i.e. at a speed of 
38 mms-1  was used to apply a load to the sample 
sufficient to cause "brittle" failure. Typical loads were 
381-445 N. A schematic illustration of the fracture 
produced by this loading mechanism is shown in 
Fig. 1, where the load-bearing surface is labelled A, 
the fracture surface is labelled C and the intersection 
of these two perpendicular surfaces is the line labelled 
B. The sample was first loaded in compression and 
failed in Mode 1 tension. The fracture surfaces were 
gold coated and observed in a scanning electron 
microscope. 

2.3. Digitization 
The patterns were digitized using a high-resolution 
video frame grabber (v.f.g.) interfaced to a PC/AT 
microcomputer. The video camera was a Panasonic 
WV1500A480 line black and white videcon, with 
a photographic stand and back illumination capabil- 
ity. The v.f.g, digitized images to 480 by 512 pixels with 
8 bits of resolution. Processing software, written in 
machine assembly language, with standard routines 
for digital image manipulation such as contrast en- 
hancement, panning and zooming was used. The 
digital images were interactively analysed using 
a pointing device, which had the capacity to either 
define a coordinate or assign a label. A discrete set of 
points was used to describe each branch of the skel- 
eton. The density of points was determined by the 
curvature of the particular section of the branch: 
straighter portions of the branch needed fewer points 
than curved portions. The skeleton formed in this 
manner was overlaid on the real image so that deci- 
sions concerning exact locations of branching points 
and branch tips were made by the operator. 

The data obtained in this way was transferred in 
plain text files to either an IBM Risk 6000 or IBM 486 
PC to be analysed further. The branches were relabel- 
led to contain information on the generation order, 
number of branches in a particular generation and the 
parent branch labelling. A Fortran program was ap- 
plied to connect the data points into a branching 
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structure which corresponded to the original skeleton. 
Any pixels th rough  which these lines passed were 
considered to be occupied. 

3. Results 
3.1. Qualitative characterization of the 

fracture surface 
A typical surface is shown in Fig. 2a, at low magnifica- 
tion. The overview is labelled in the same way as 

the schematic drawing and includes the region near 
the spherical tip of  the indentor,  "a", followed by the 
furrowed "river" region, f rom "b" to "c", covering 
roughly 0.5 m m  and lastly by the smooth  or "mirror"  
region, "d". The "river" region, a por t ion  of  which is 
shown at higher magnification in Fig. 2b, contains the 
morpho logy  described by Rober tson and Mindroiu  
[29] as "steps" and "welts" (middle of figure) and 
the "stacked lamellar texture" (top of figure). The 
smooth  region shown both  in Fig. 2b and at higher 

Figure 2 (a) Low-magnification electron micrograph of fracture surface. A, C and B indicate the top surface, fracture surface and intersection 
of these two surfaces, respectively, as shown schematically in Fig. 1. The region damaged by the spherical indentor before fracture is marked 
"a". The circular region from "b" to "c" is the furrowed "river" region. The mirror region is marked "d" and at higher magnifications shows 
nearly parallel densely spaced striations, shown in Fig. 4. (b) Higher magnification electron micrograph of fracture surface C in the circular 
region between "b" and "c", showing branched "river markings". (c) Highest magnification electron micrograph of fracture surface C, at the 
end of the circular region from "b" to "c", and the beginning of region "d", showing the nearly parallel densely spaced striations. 
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magnification in Fig. 2c actually contains striations 
described by Robertson and co-workers [29 31] as 
the "basic longitudinal texture". This figure shows 
more clearly the branched structures tapering off into 
the nearly parallel striations and demonstrates the 
difficulties in determining the ends of the branch tips. 

The region of increased complexity, shown in 
Fig. 2a from "b" to "c" and at higher magnification in 
Fig. 2b, can also be observed using an optical micro- 
scope. When viewed directly (i.e. in a backscattering 
geometry) under the light microscope it is apparent 
that the dark regions are not "furrows", but instead 
are steps connecting two surfaces on different planes. 
This has been confirmed using confocal microscopy. 

The pattern as a whole exhibits radial symmetry, as 
can be seen in Fig. 2a, with the branch tips ending in 
a circular envelope around the indentation area. There 
are at least 25 separate major branches which orig- 
inate in a region below that damaged by the indentor. 
The branch segments exhibit curvature toward the 
radial direction, which allows them avoid each other 
as they further propagate and branch. This allows 
a greater number of generations to occur than if the 
branches followed straight lines in the initial growth 
direction. Binary branching (two branches emanating 
from a branching point) is dominant with occasional 
occurrence of ternary branching. Terminal branches 
can occasionally be seen emanating close to the origin. 
Qualitatively, it can be seen that the empty space 
between branches closer to the initial indentation is 
larger than in the region where the pattern terminates. 
On average, the branches closest to the tips are shorter 
than those closer to the initial branch and the ang- 
les (although curved) formed by the branch tips are 
smaller than those formed at the primary branches. 

The fracture pattern in Fig. 2a-c  shows that por- 
tions of the pattern observed at high magnification are 
similar to the whole pattern observed at low magnifi- 
cation. In addition, patterns formed in the same ma- 
terial which are observable to the naked eye also have 
a similar appearance. This indicates that some order- 
ing principle may be involved in the pattern formation 
and that the patterns may exhibit some aspects of 
self-similarity or self-afinity (scale invariance) [14-16]. 
The patterns can be described as trees in the sense that 
branching occurs with self-avoidance of the branch 
segments, i.e. there are no closed loops. 

3.2. Quantitative characterization of 
branching patterns: topological and 
geometrical properties 

The patterns have been analysed for two-dimensional 
length and angle information defined by the skeleton. 
The word "skeleton" is used for the graph created by 
the centre lines of all branches of the fracture pattern. 
The intersection of two branch segments is called 
a node or branching point. The topological properties 
[14] of a branching structure, which reflect connect- 
ivity properties unaffected by changes in lengths or 
angles of the branches, are retained if this structure is 
treated as a tree in a mathematical sense, i.e. as a set of 
connected nodes without loops, and can be studied 

using combinatorial concepts [32]. Geometrical prop- 
erties [14] such as distributions of branch lengths, 
diameters of branches, branching angles and curva- 
ture, provide complementary information. The spatial 
distribution of the measure of a branching structure 
can be characterized using concepts from fractal ge- 
ometry [14 16], providing an additional geometrical 
characterization of the pattern. 

3.2.1. Ordering schemes 
In order to characterize a branched structure, it is 
convenient to define an ordering scheme for its seg- 
ments. Hydrogeologists were the first to propose such 
ordering schemes for river networks [7-9]  and these 
schemes were subsequently accepted in many other 
areas in which branching structures are relevant, such 
as biology [33, 34] (brain cells [35], blood vessels 
[36, 37], lungs [33, 34], etc.) and fracture [4], Two 
particular schemes, namely the Weibel [10, 33] and 
Strahler schemes [8, 9, 33] are the most commonly 
employed in the characterization of branching struc- 
tures and we found them very useful for characterizing 
the fracture patterns considered in this work. 

In the case of Strahler scheme, presented in Fig. 3a, 
any branch ending with no side branches is designated 
order 1 and when two first-order branches meet, they 
form a branch of order 2. The rules used to designate 
order are that when two branches of the same order 
meet they form a branch of one higher order, and 
when branches of different order meet, the order of the 
conjoined branch remains that of the branch of high- 
est order. In Weibel's scheme, Fig. 3b, the order of 
successive bifurcations of a branching structure is 
labelled by the "generation" or "shell" number. The 
trunk (branch segment closest to the origin) is desig- 
nated order 1. The order of subsequent branch seg- 
ments is increased by 1 at each node going away from 
the origin. If the last segments (tips) of each major 
branch, which are of highest order according to the 
Weibel scheme, are redefined to be the lowest order 
branches, i.e. of order 1, and similarly branches that 
were one order smaller than the maximum order be- 
come of order 2 and so on until the trunk is reached, 
one obtains the inverted Weibel scheme, shown in 
Fig. 3c. A tree ordered by the Strahler scheme will 
have fewer branches and smaller order than the same 
tree ordered by the Weibel scheme, because the Strah- 
ler order increases only when two branches of the 
same order meet. Because the "tips" of the branches of 
the pattern ended in a well-defined arrest line, whereas 
the "trunks" or "roots" originated in the damage re- 
gion which did not have a well-defined origin, the 
Strahler and inverted Weibel schemes, where the first 
order branches were the tips, were more appropriate 
for the analysis of our fracture patterns. 

The fracture patterns exhibited curvature of the 
branches, so the branch segments and angles were 
either described in terms of a skeleton with linear 
segments between the nodes or a skeleton in which 
branch segments truly followed the actual pattern, as 
shown in Fig. 4. The former will be referred to as 
a "stick" model and the latter as a "curved" model. 

2971 



N(1)=7 

3 N(2)=3 
N(3)=1 

2 3 

/ \  
(a) 

N(1)=1 

1 N(2)=2 

N(3)=4 

N(4)=4 

N(5)=2 

(b) 

N(1)=2 

5 N(2)=4 

N(3)=4 

N(4)=2 

N(5)=1 

3 2 X 2 I ~ I ~  2 2 

(c) 

Figure 3 Schematic drawings of (a) an asymmetrical branched struc- 
ture labelled according to the Strahler scheme, (b) the same branched 
structure labelled according to the Weibel scheme, and (c) the same 
branched structure labelled according to the inverted Weibel scheme. 
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Figure 4 Schematic drawing of the ( - - )  "stick" and ( ) "cur- 
ved" models of the fracture pattern according to the Weibel order- 
ing scheme. 

For the "stick" model the branch angles are well 
defined and the order of the branch angle is designated 
the order of the "parental" branch from which the 
sides of the angle emanate, as shown in Fig. 4 for the 
case of the Weibel scheme. 

Our aim in this part of the work was to determine if 
topological as well as geometrical properties of the 
fracture pattern could be described by simple scaling 
laws in terms of branch order, as has been done in the 
case of river networks and lungs. For  this purpose, we 
counted the number of branches in each order for each 
major branch and determined their mean lengths for 
both the stick and curved skeleton models, using the 
Strahler, Weibel and inverted Weibel schemes. Branch 
angles were counted and measured as a function of 
branch order from the stick skeleton, but only using 
the Weibel and inverted Weibel schemes. The whole 
pattern was then characterized by superimposing and 
averaging the properties of the individual major 
branches. 

3.2.2. Number of branches and 
branch-length distribution 

Using Strahler's ordering scheme and either the "cur- 
ved" or "stick" skeleton, we found that the number of 
branches, Ni, of order i obeyed an exponential law 

Ni ~ (RB) - i  ( la)  

where R~ is the branching (bifurcation) ratio, defined 
in the asymptotic region as 

RB = N , / N ~ + I  (lb) 

The number of branches, N,-, in successive orders de- 
creases by a constant factor equal to the branching 
ratio, RB. The branching ratio is obtained from the 
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Figure 5 Dependence Weibel ordering scheme log Ni and log Li on 
the order i. ( i )  Ni, the number of branches of order i; (0) L~, the 
average length of branches of order i. 

slope of the log N~ versus order i plot. Similar relation- 
ships were found for the mean lengths of branches of 
order i 

Lz ~ (RE) / (2a) 

where RE is the branch length ratio defined as 

RL = L i+l /L i .  (2b) 

The log of the number Ns of branches of order i is 
plotted versus order i in Fig. 5 for the case of the 
Strahler ordering scheme for the "curved" skeleton. 
These data can be represented quite well by a straight 
line with four orders out of the maximum of five 
observed in the patterns falling near the line. Here, 
order 1 corresponds to the tips and order 5 corres- 
ponds to the roots; it is more difficult to obtain good 
data near the damage region of the sample where the 
roots begin. According to Equation la, the slope of 
this line in the asymptotic region of small orders gives 
the value of ln(RB) = 0.93 _+ 0.02, and a bifurcation 
ratio RB = 2.5 + 0.05. These data, along with data 
obtained for the "stick" model are presented in 
Table I, where the values of RB obtained are within the 
experimental uncertainty. 

It can be shown that in the case of the Strahler 
ordering scheme the branching ratio RB, has a lower 

TABLE I Values of the bifurcation ratio, RB, length ratio, RL, and 
fractat dimension, D, D = Iog(RB)/Iog(RL), for the curved and stick 
skeleton in the case of Strahler and inverted Weibel schemes 

Scheme Skeleton Dependence RB RL D 
type 

Strahler Curved Exponential 2.5 1.9 1.43 
Stick Exponential 2.5 1.9 1.43 

Inverted Curved Exponential 1.8 1.6 1.3 
Weibel Stick Exponential 1.8 1.5 1.4 

limit of 2 in the case of symmetrical binary trees, 
defined as ones in which branches bifurcate at each 
node on the shell. For  asymmetrical trees, for which 
bifurcation at each node does not necessarily occur, 
the values of RB greater than 2 are expected, with 
increasing values characterizing increasing degrees of 
asymmetry of the tree pattern. In the limit of a com- 
pletely asymmetrical tree, which corresponds to comb 
structures, the branching ratio, RB, is equal to the 
number of side branches, b [32, 38], which can be an 
arbitrarily large number. The value of RB = 2.5 found 
for the fracture patterns is thus close to the value 
Rs = 2 for symmetrical trees. It should be noted that 
the closer the tree pattern is to a symmetrical one, the 
more the order of the tree and RB are affected by the 
loss (removal) of branch segments, especially the tips. 
This can occur, for example, if the branch tips are not 
considered due to lack of resolution in the electron 
microscope picture or in the digitized image. 

The logarithm of the mean length, Li, for all 
branches of order i is also plotted versus i in Fig. 5 for 
the case of the "curved" skeleton. From the slope of 
the straight line drawn through the data, log 
(RE) = 0.65 _+ 0.05 and thus RE = 1.9 4- 0.1. These re- 
sults, along with those for the "stick" model, are sum- 
marized in Table I; it can be seen that both curved and 
stick models yield similar values of RE. 

When the inverted Weibel ordering scheme is used 
with either the "'stick" skeleton or "curved" skeleton 
description of the branching pattern, N~ and Li also 
exhibited an exponential dependence on i as in Equa- 
tion ta  and b, with log (Rs) = 0.6 _+ 0.03 (RB = 1.8) 
and log (RE) = 0.4 _4- 0.05 (RL = 1.5) for the stick skel- 
eton and log (RB)= 0.6 • 0.03 (R~ = 1.8) and log 
(RL) = 0.45 _+ 0.05 (RL = 1.6) for the curved skeleton. 
These data are also presented in Table I. However, 
only 3 or 4 orders (out of a maximum order of 7) could 
be fit by a straight line on the semi-log plot. In the case 
of the inverted Weibel scheme the branching ratio, RB, 
has an upper limit of 2 in the case of a symmetrical 
binary tree and for asymmetrical trees, values of RB 
less than 2 are expected, with decreasing values char- 
acterizing increasing degrees of asymmetry of the tree 
pattern. For  a completely asymmetrical tree (i.e. a lin- 
ear comb with b teeth) the value of RB is equal to 
1 [39]. Thus, the values obtained for the fracture 
patterns using the inverted Weibel scheme also indi- 
cate that the fracture pattern was closer to a symmetri- 
cal one. 

When Weibel's ordering scheme and either a stick 
skeleton or a curved skeleton was used, the depend- 
ence of N~ and Li on order i was better fit using 
a power law rather than an exponential. 

3.2.3. Distribution of branch angles 
It is apparent from Fig. 2a-c  that the average angle 
decreases from that observed at the root of the 
branching structure to that observed at the tips. 
Because the average branching angle decreases with 
generation number from the root of the skeleton, the 
structure (angles) close to the root, for example, 
cannot be obtained from those close to the tips by 
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Figure 6 Dependence of log r on log i, where ~x i is the average 
branch angle and i is ordered according to the ( I )  Weibel and (O) 
inverted Weibel schemes. 

applying the same scale transformation in both the 
radial and tangential directions. 

In order to find the dependence of the angle on 
branching order, it is more convenient to apply the 
Weibel and inverted Weibel schemes, with angles de- 
fined according to the "stick" skeleton model, in which 
the nodes of the skeleton are connected by straight 
lines to parental nodes, as illustrated in Fig. 4. The 
dependence of the log of the average branch angle, ~i, 
on log i, in the case of both Weibel and inverted 
Weibel scheme, is presented in Fig. 6. The good linear 
fit (for 5 out of 6 orders) observed in the case of the 
Weibel scheme implies a power law dependence of ~i 
on i, i.e. 

cq ~ i x (4a) 

A value of x = 0.3 was obtained from the slope of the 
log-log plot in the asymptotic, large i region. When 
the pattern is ordered according to the inverted 
Weibel scheme, linear behaviour is observed on a plot 
of log(~) versus i, shown in Fig. 7, implying that in 
that case the dependence of cxi on i is exponential, i.e. 

cx~ ~ (R~) -~ (4b) 

A value of in (R~) = 0.12 is obtained from the slope of 
the plot, giving R~ = 1.13. For  the range of angles 
observed in our patterns, this scaling behaviour indi- 
cates that the angles change as a power law from 
a value of 30 ~ near the roots to a value of 16 ~ at the 
tips for the Weibel ordering system, and exponentially 
from 35 ~ near the roots to a value of 16 ~ at the tips for 
the inverted Weibel scheme. 

3.3. Fractal analysis 
A fractal is an object which has the same degree of 
complexity on all length scales. In the most simple 
case of homogeneous fractals, it is possible to scale one 
part  of the structure to another by an isotropic change 
of length scale. A homogeneous self-similar fractal can 
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Figure 7 Dependence of log ~ on order i, where ~ is the average 
branch angle and i is ordered according to the ( I )  Weibel and (O) 
inverted Weibel schemes. 

thus be characterized in a simple way by its fractal 
dimension, D, which expresses how the average 
"mass" (M(R)) within a circle of radius, R (centred 
on an occupied par t  of the fractal) scales with 
R [15-18], i.e. 

( M ( R ) )  ~ R ~ (5) 

For  Euclidean objects in one dimension, D = 1 and in 
two dimensions, D = 2. In the case of fractal objects in 
two dimensions 1 ~< D ~< 2. 

Another approach commonly used to determine the 
fractal dimension D of a fractal structure is the box- 
counting method [-16-18], where a grid of boxes of 
linear dimension, a, is placed on the pattern and the 
number  of boxes fully or partially filled by the pattern 
is counted (the smallest size of s is typically the size of 
a pixel in a digitized image and is increased until e is of 
the order of the size of the whole pattern). A homo- 
geneous, self-similar fractal number  of boxes covered 
by the pattern scales as 

M(s) ~ a -9  (6) 

By plotting log[M(8)] versus log r for different values 
of 8, the fractal dimension D can be obtained from the 
slope of the graph. We have used a new variable 
k defined in terms of ~ as ~ = 2 k- 1, It corresponds to 
increasing the linear size of the boxes by a factor of 
2 at each iteration k; i.e. k = 1 corresponds to boxes of 
size one pixel, k = 2 corresponds to boxes of size 
2 pixels, k = 3 corresponds to boxes of size 22 pixels, 
etc. The fractal dimension, D, can be deduced from the 
slope of the plot of log[M(k)]/log 2 versus k (because 
a = 2 k- 1), shown in Fig. 8. The plot can be separated 
into two linear regions. For  small values of k (up to 
k = 3), corresponding to high resolution (i.e. smaller 
length scales), the slope of the plot gives a fractal 
dimension D = 0.9 which is close to the expected value 
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Figure 9 Semilog plot of the shell mass, AM, versus, R, for fracture 
pattern. R is measured in units of pixels and AR corresponding to 
AM(R) fiad a constant  value of 10 pixels. 

D = 1. For  larger values of k(k > 3), corresponding to 
lower resolution (i.e. larger length scales), the data fall 
on a straight line of slope, D = 1.4 + 0.1. The value of 
k at which the crossover occurs is called kor. It is only 
for values of k larger than the crossover value that the 
fractal geometry of the pattern is observed. 

For  fractal branching structures with branching 
ratio, RB, and length ratio, RL, the fractal dimension 
exponent, D, can also be expressed as [15, 39] 

D = Iog(RB)/Iog(RL) (7) 

Values of D obtained using this relation for the case of 
the Strahler and inverted Weibel and ordering 
schemes are presented in TableI .  Equation 7 was 
derived for the case of exponential dependences of N~ 
and L; on the branching order i. We observed the 
exponential relations only when the Strahler and in- 
verted Weibel schemes were used to characterize the 
fracture pattern. For  the Strahler scheme, 
log(RB) = 0.93 and log(Rr) = 0.65, so that D = 1.43 
and for the inverted Weibel scheme log(R~) = 0.6 and 
log(RL) = 0.45 implying that D = 1.3. These values of 
D are in good agreement with the value of D = 1.4 
obtained using the box counting method. 

A variant on the mass radius method for determin- 
ing the fractal dimension, D, is to take the derivative of 
Equation 5, giving A M / A R  ~ R D- 1. The concentric 
geometry of our pattern makes the use of this 
mass-shell method for determining the fractal di- 
mension appropriate. In this method, a sequence of 
concentric shells of radius R and width AR (we chose 
AR = 10 pixels, and R in the range (100,650)) is 
constructed about an appropriately chosen origin, 
corresponding to the origin of the fracture pattern. 
Therefore, the mass, AM, of a fractal object within 
shells of increasing distance from the origin should 

scale as 

AM ~ R v - I A R  (8) 

By plotting AM versus R on a log-log graph, the value 
of the fractal dimension (D -- 1) can be obtained from 
the slope. In our case, the data plotted in this way are 
not linear. Instead, a semilog plot of AM versus R, 
shown in Fig. 9, is linear over a finite range of 
R values; i.e. between the lower and upper cut-off 
lengths determined by the indentation region and size 
of the pattern, respectively. This result clearly indi- 
cates that there is an exponential increase of shell mass 
with increasing shell radius (AM ~ e cR AR) where c is 
a constant. This dependence also implies that the mass 
density is increasing as we go further from the centre 
of the pattern. For  the fracture pattern shown in 
Fig. 2a-c, it can be seen that the branches are closer 
together at each level, packing space more densely 
further from the origin. 

3.4. Fractal trees 
The fracture patterns resemble trees with branching 
ratios equal to approximately 2 and with a distribu- 
tion of branch lengths at each level (generation). The 
number of generations observed for the patterns is 
relatively small (less than 8). In order to understand 
the crossover behaviour and finite size effects that 
occur in real systems, and how these affect scaling 
behaviour and values of the fractal dimension ob- 
tained, we have performed numerical analyses on frac- 
tal symmetrical binary trees (RB = 2) defined by 
Mandelbrot [14]. The trees are deterministic struc- 
tures formed by infinitely thin stems in which the 
branching ratio, RB, equals 2 and the length ratio, RL, 
is constant; i.e. in each generation all the segments are 
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Figure 10 An example of an exact tree with R E = 2 and 0 = ~/6. 

of the same length and the interbranch angle takes the 
same values at every node. An example of a fractal tree 
with RL = 2 and 0 = ~/6 is shown in Fig. 10. We have 
analysed fractal trees with varying length ratios, RL, 
and branching angles, 0, as a function of number of 
generations and resolution. Further, we developed a 
model in which the angle for successive generations 
decreased as a power law with increasing generation 
order. 

For  fractal trees [14, 271 the fractal dimension 
changes for different parts of the structure. The stems, 
in the interior of the structure, are one-dimensional 
(D = 1) and the tips have a different fractal dimension 
(1 < D ~< 2) for a tree embedded in two-dimensional 
Euclidean space. Mandelbrot called these exact trees 
non-uniform fractals owing to the fact that their frac- 
tal dimension, D, takes different values for different 
parts of the structure. The whole tree has fractal di- 
mension equal to D (where D is the larger of the two 
values of 1 or D = log 2/log (RL)), because the larger 
fractal dimension dominates the overall scaling behav- 
iour. In order to obtain values of D between 1 and 
2 (which span the range of our real fracture patterns), 
RL must lie between 21/2 and 2 due to relation 
D = log 2/log (RL). The fraetal dimension of the tree 
does not depend on the branching angle as long as 
self-avoidance (i.e. the branches do not cross each 
other) is fulfilled, although the shapes generated for 
various 0 values look different (see, for example, Plate 
155 in [14]). For  each RL value there is a critical value, 
0or, of the interbranch angle, 0, above which branches 
will intersect. It satisfies the relation 

9 - 2  
RE sin(0/2) -- ~ sin(/O/2)/RiL > 0 (9) 

i 

which is derived by requiring that any path of a fractal 
tree of length ratio RL and branching angle 0, with 
initial branch in the x direction and the second order 
branch emanating at an angle 0/2 with respect to the 
x-axis, does not intersect that axis and subsequently 
its image path, after an arbitrary number of genera- 
tions, g. 

We have applied the mass-shell and box-counting 
methods numerically to Mandelbrors  fractal binary 
trees digitized on a lattice in the same way as the 
fracture pattern, using values of RL in the range 
(21/2, 2) and branching angles 0 taking values of 0, ~/6, 
re/3, ~/2, 2~/3 and TO. When these trees were analysed 
using the mass-shell method, the dependence 
A M  ~ e cR was observed as was the case for the real 
fracture pattern. The slope, c, of the plot of log(AM) 
versus R increased when RL increased from 2 ~/2 to 2, 
but was much more sensitive to the branching angle, 0. 
This exponential increase of shell mass with radius is 
not that expected in the case of uniform fractals, for 
which a power-law dependence is found. Thus fractal 
trees do not exhibit simple "fractal" behaviour when 
analysed using the mass-shell method. The case 0 = rc 
and RL = 21/2 is a special case for which a two-dimen- 
sional space-filling structure having D = 2 is expected 
[14, 333. In this case we observe that c = 0 using the 
mass-shell method, i.e. no exponential dependence of 
shell mass with R. Instead a slower power-law depend- 
ence of mass versus R is obtained. 

When the box-counting method was applied to the 
fractal trees having RB = 2, the mass M ( k )  covered by 
boxes of the iteration size k showed a k dependence 
similar to that observed for the fracture patterns. 
There were two regions of the plot. For  small values of 
k, D ~ 1 and for values of k greater than the crossover 
kor, the fractal dimension obtained numerically de- 
pended mainly on Rz and not upon the branching 
angle, as expected [14]. For  a particular value of RE 
and 0 > 0oi (i.e. for values of 0 for which a tree struc- 
ture rather than a closed loop structure is obtained), 
values of the fractal dimension, D, within our error 
bars ( + 0.1) were obtained. The values obtained at 0or 
for each RL a r e  listed in Table II and are compared 
with the values of D calculated using Equation 7. 

The error bars for D obtained by the box-counting 
method are _+ 0.1. The corresponding values of the 
fractal dimension exponents obtained by the box- 
counting method and using Equation 7 are compara- 
ble. In the case RL = 21/2 and 0 = re, a space-filling 
structure with D = 2 is expected, but we obtained 
a somewhat lower value of D = 1.95. For  RL = 2 the 

TABLE II Fractal dimension exponents obtained for different 
Rc values using the box-counting method and relation D = In 2/ln 
(RL) 

RL D 0or 

Box-counting In 2/ln (RL) 

2 1.0 1.0 0 
1.8 1.3 1.2 54 
1.5 1.65 1.7 152 
21/2 1.95 2.0 180 
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expected value o lD is 1, and we obtained that value at 
the critical angle 0or = 0 and larger values for 0 > 0or. 
The differences in D obtained from Equation 7 and 
from the box-counting method are probably due to 
the finite number of generations used to represent 
fractal trees as well as to lattice discretization of the 
problem. Equation 7 is valid in the asymptotic scaling 
region, corresponding to a large number of genera- 
tions, while in our analysis only 12 generations were 
used. We have thus investigated the effect of increasing 
the number of generations on the value o f / )  obtained 
by the box-counting method to determine whether 
this value of D approaches the calculated value of 
D (Equation 7). In order to observe the effect of in- 
creasing number of generations, it is necessary to 
increase resolution as well. 

Increasing resolution, which was determined by the 
size of the largest branch Io from Io = 100 to 500 for 
a fixed number (13) of generations and with the fixed 
parameters RE = 21/2, RB = 2 and 0 = re, shifted k~r to 
larger values of k..The value of D in the region k > k~r 
was slightly increased in the range (1.8-2) implying 
that for high enough resolution and large enough trees 
the expected value D = 2 would be approached. Then, 
at a fixed resolution of I0 = 500, the number of gen- 
erations was increased from 5 to 12, using the same 
parameters: RE = 21/2, RB = 2 and 0 = ~. With in- 
creasing number of generations, the slope of the log 
M(k) versus log k plot at large k (larger length scales) 
was not changed, but the slope at intermediate and 
small values of k (shorter length scales) increased and 
the crossover value of k, kor was shifted to smaller k. 

The effect of different number of generations and 
resolution is shown in Fig. 11, where the data are 
plotted using a trial value Dtr of the fractal dimension 
exponent on the log log plot of the scaled variables 
y = M(k)2 (k-1)vtr and x = 2k-1/[Io/R~]. This plot 
presents a crossover function [11, 123 on which a data 
collapse for different values of 9 and k can be observed. 
The crossover at which the scaling behaviour changes 
occurs at x = 1, giving kor = [log(210) - g log(RE)I/ 
log 2. This is in agreement with the observation that 
the crossover value k~, decreases with the number of 
generations, g, and increases with resolution, I0. 
A plot ofy  versus x should have two regions separated 
by x = 1. For  values of x < 1, the slope is Dt~ - 1 and 
for x > 1 (fractal regime) the slope is Dtr - -  D. The 
latter has zero slope for the best choice of D~,, which in 
our case is Dtr = 1.9, as shown in Fig. 11. The effect of 
increasing number of generations on this plot was to 
make the flat region longer (i.e. to larger values of x) 
before finite size effects, which show up as an upward 
shift of y at large x, occur. The slope of the crossover 
function for the data at small x (or k) gives D = 1 as 
expected. 

The discretization (lattice approximation) effect on 
the fractal dimension of exact trees obtained by box- 
counting method might also be important. The func- 
tional form of D = log 2/log(RE) is steeper for lower 
values of RE and is thus sensitive to small changes in 
RE for the smallest value of RE we considered, namely 
f o r  RL  = 21/2. Here, the effect of discretization might 
be most pronounced. We examined several effects of 
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Figure l l  Log-log plot of scaled mass M(k)/M(1)2 k-1 versus 
scaled k: 2 k I/[lo/R[l where lo is the length of the largest branch of 
the  tree, g is the number  of generations and kor = log(2Io) - 9 
log(RE) for k/[io/R[l = l. g = ( I )  11, (O) 10, (T) 9. 

discretization in the case of trees with RE = 21/2, 
0 = re, including rotations of trees and shifts of 
the origin [39], and observed a slight change of the 
fractal dimension D in the range 1.85-2. However, 
these effects should be less important with increasing 
resolution. 

We have also considered a modified version of exact 
trees having RB = 2 and RE fixed ( = 1.8) and investi- 
gated the effect of varying the branching angle, 0, with 
generation number, i, on the values of fractal dimen- 
sion, D, obtained by the box-counting method. We 
assumed a power-law dependence of 01, i.e. 
0 i ~ 0 - ( g + l - i ) - x ,  where 9 is the size of the 
tree. For  x in the range (0,1), there was only a 
slight change of fractal dimension from D = 1.32 
(for x = 0) to D = 1.36 (for x = 1). Because we did 
not observe much effect on the fractal dimension when 
the branching angle, 0i, of the tree structure was var- 
ied, it is not surprising that there was little effect on 
D when the value of 0 was varied with generation 
number. 

We note that a better comparison between the 
experimental fracture patterns and the exact tree 
model might be achieved by considering an ensemble 
of trees having the same RE and 0 values but different 
sizes (i.e. different number of generations). It can be 
shown that a superposition of individual trees of dif- 
ferent sizes will broaden the crossover region but not 
affect the fractal scaling behaviour at large k. 

4. Discussion 
The patterns we observe on the fracture surfaces of 
ethoxylated bisphenol-A dimethacrylate resins were 
almost identical in appearance to those observed by 
Robertson and co-workers [29-31] and others 
[4, 40]. We have analysed the patterns in the regions 
of the "steps" and "stacked lamellar texture" in which 
the branching pattern is formed as a series of "steps" 
and "welts" originating from the crack front propagat- 
ing on different planes. The branched fracture pattern, 
shown in Fig. 2, was analysed using three different 
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ordering schemes for labelling its branches. It was 
found that for the Strahler and inverted Weibel order- 
ing schemes, the number of branches, average branch 
lengths and branch angles of a particular order, de- 
pended exponentially on that order. When Weibel's 
ordering scheme based on generation number orders 
was applied, a power-law scaling behaviour of those 
quantities better described the behaviour. The diffi- 
culty in determining whether a branching structure 
obeys an exponential or a power-law scaling behav- 
iour has been discussed by West [34] and Horsfield 
[41] for the case of the diameters of bronchial trees. 
These were first reported to exhibit an exponential 
dependence on the order, but a power-law dependence 
[34] was found after applying a more detailed analysis 
using increased number of generations. In addition, it 
was found that the labelling scheme influenced 
whether the data were better fit by a power-law or 
exponential dependence [41]. The ordering scheme 
which ordered branches in the direction of increasing 
generation number fit the data better using a power 
law, while the Horsfield scheme which inverted this 
order fit the data better using an exponential fit [411. 
We similarly found that generational ordering (i.e. 
Weibel scheme) fit our data for number of branches, 
average branch lengths and angles best using a power- 
law dependence and that the inverted ordering 
schemes (i.e. Strahler's and inverted Weibel) gave bet- 
ter fits to an exponential dependence. 

The above scaling relations describing properties 
(i.e. number of branches, mean branch lengths and 
branching angles) of the fracture pattern in terms of 
order imply that the fracture pattern is a statistically 
self-similar structure. However, unlike homogeneous 
fractals for which any portion of the pattern when 
magnified isotropically looks statistically self-similar 
to the original pattern, our fracture pattern looks 
strikingly more similar to Mandelbrot's fractal trees. 
These are described as non-uniform fl'actals having 
different fractal dimensions for the trunks and tips. In 
this case, it is only when the outer portion of the 
pattern is magnified isotropically that it will look 
statistically similar to the original pattern. In the case 
of homogeneous fractals, branches of all sizes are 
distributed uniformally over the entire pattern, where- 
as in the case of non-uniform fractals, the smaller 
branches occur preferentially further away from the 
origin. Although our fracture patterns are similar to 
fractal trees, they are different in that the segments are 
curved and also that the branching angles decrease in 
going from the roots to the tips. Nevertheless, the 
fractal analysis we performed on the fracture patterns 
and fractal trees gave similar results, indicating that 
the model of non-uniform ffactals might be applicable 
to the experimental fracture patterns. 

When the box-counting method was applied to 
both fractal trees and the fracture pattern, the result- 
ing plot of log M(k) versus k exhibited the same 
behaviour, namely that it could be separated into two 
linear regions. For  values of k < kor, corresponding to 
higher resolution (i.e. smaller length scales), the slope 
of the plot gave for the fractal dimension, a value close 
to D = 1. This is expected because in the region of high 
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resolution all the branches of the fracture pattern 
appear as linear objects. For  k > kcr a higher value of 
the fractal dimension was observed indicating the on- 
set of fractal behaviour of the branching pattern. For  
our fracture pattern a value of D = 1.4 was observed 
in this region of k. For  the case of fractal trees, the 
fractal dimension in this region was found to depend 
on the length ratio, RL, but not much on the value of 
the branching angle, and ranged between D = 1 and 2. 

This behaviour is that expected for non-uniform 
fractals with D = 1 for the trunks and D > 1 for the 
tips. For  a given k (or box size, ~) the interior  re- 
gion of the tree consists of those branches having 
lengths greater than e and behaves as a linear struc- 
ture having D = 1, while the exterior of the pattern 
has D > 1. The trunk, i.e. the longest branch in the 
interior of the pattern, has D = 1 for any resolution up 
t o  its size. When a DLA structure is grown numer- 
ically, the minimum branch size is usually a pixel size 
(kc~ = 1) and the region with D = 1 is not observed. 
However, for other uniform fractals, this crossover 
behaviour is also observed when the pixel size of the 
lattice is smaller than the smallest branches of the 
structure [42]. 

It is important to examine why the box-counting 
method when applied to both exact trees and the 
fracture pattern (both non-uniform fractals) gives the 
same fractal scaling behaviour in the region k > kcr, as 
in the case of uniform ffactals. It is clear that for our 
branching pattern, as well as for the fractal trees, 
branches of different sizes, starting with the smallest 
ones at the tips, are spatially distributed in shells of 
different radii. For  example, the shortest branch seg- 
ments are the tips which occur preferentially at the 
periphery (i.e. the arrest line) of the pattern, and are 
not distributed uniformly over the whole pattern as in 
the case of uniform fractals. The shell next to the tips 
contains branches of average size greater than the 
average size in the first shell and as the origin is 
approached, the average branch length increases. 
These restricted spatial distributions of branches of 
particular sizes cause the interior of the branching 
pattern to be empty in comparison With uniform frac- 
tals, e.g. DLA structures, for which branches of differ- 
ent sizes are distributed uniformally over the pattern. 
When the box-counting method is applied to either 
uniform or non-uniform ffactals it eliminates those 
branches which are smaller than the particular box 
size by the same amount, whether or not they are 
distributed uniformly as in the case of uniform fractals, 
or in restricted regions of space as in the case of 
non-uniform fractals. Thus the box-counting method 
will provide the same kind of information for both 
uniform and non-uniform fractals. 

The value of the fractal dimension L) -- 1.4 obtained 
by applying the box-counting method to our fracture 
pattern agrees with the value of D obtained fl'om 
Equation 7, commonly used in describing branched 
structures, for the cases of both Strahler's and inverted 
Weibel's schemes. In the case of exact trees, we ob- 
tained good agreement for RL = 21/2, 1.5, 1.8 and 2. 
This is perhaps expected, because Equation 7 is de- 
rived for fractal structures where Ni and Li depend 



exponentially on the order i. The exact trees were 
generated assuming this dependence and the Strahler 
and inverted Weibel (but not the Weibel) schemes 
exhibited this dependence for the fracture patterns. 
A greater discrepancy in some cases may be due to 
lattice effects or to the fact that we have not reached 
the-asymptotic scaling region of fractal behaviour. In 
the case of DLA this same comparison indicated that 
D = 1.6 4- 0.1 using Equation 7 and D = 1.62 _+ 0.02 
or 1.67_+0.03 using the box-counting method 
r l l ,  12]. 

The mass-shell method for characterizing both the 
fracture pattern and the exact trees provides more 
useful information on how the mass of the pattern is 
spatially distributed in the radial direction. By ap- 
plying this mass-shell method, we found that the mass 
of the pattern (i.e. the number of occupied pixels) grew 
exponentially with the radius in both cases. In the case 
of exact trees, the exponential increase of mass with 
radius depended on the branching angle (for given RE 
and RB). For  the fracture patterns, there were addi- 
tional factors which caused the density to increase 
even faster with R: (i) the branching angle decreased 
with generation number causing the branches to be 
closer together, and (ii) the curvature of the branches 
towards the radial direction permitted closer packing 
of the branches. The constrained spatial distribution 
of branches (e.g. the interior of the pattern is empty 
compared with the more numerous smaller branches 
densely distributed close to the periphery) causes the 
dense packing which results in the exponential 
increase of mass with R. This result is completely 
different than the case of ordinary fractal structures 
embedded in a Euclidean space of dimension d, for 
which the mass M(R) inside the circle of radius 
R grows with a power-law behaviour, i.e. as 
M(R)  ~ R D. This exponential increase of mass M(R)  
with R (i.e. that the slope of M versus R, which is D, 
increases with R) can be formally associated with the 
fact that in the case of these non-uniform fractals, 
D increases as we go away from the origin. 

5. Conclusion 
The application of scaling and fractal geometry to 
fractured ethoxylated bisphenol-A dimethacrylate 
resins has provided a quantitative description of the 
tree-like patterns observed on a portion of the fracture 
surfaces. It was found that for the Strahler and in- 
verted Weibel ordering schemes the average number  
of branches and branch lengths depended exponen- 
tially on the order. The bifurcation, RB, and length, RL, 
ratios, describing the relationship between the average 
number and lengths of branches in successive orders, 
respectively, were found to be RB = 2.5 and RE = 1.9 
in the case of the Strahler scheme and RB = 1.8 and 
RL = 1.55 for the inverted Weibel scheme. For  the 
latter, the average branch angles also depended expo- 
nentially on the order, with R7 = 1.13. For  fractal 
branching structures in which the number and lengths 
of branches depend exponentially on the branch or- 
der, the fractal dimension, D =Iog(RB)/Iog(RL). 
Using this relationship, D = 1.43 and 1.35 for the 

Strahler and inverted Weibel schemes, respectively, 
which agreed well with the value of D = 1.4 _+ 0.1 
obtained when the box-counting method was used to 
obtain the fractal dimension. The branching structure 
of the fracture pattern, which has been previously 
observed in other fractured polymers, metallic glasses 
and crystals, resembled a fractal tree, which is an 
example of a deterministic, self-similar, non-uniform 
fractal. Because computer algorithms could generate 
fractal trees (with exponential scaling behaviour for 
the branches) with more generations than were ob- 
served experimentally, a comparison was made be- 
tween the fractal dimension obtained from the 
topological characterization and that from the geo- 
metrical characterization of fractal trees. It was found 
that the value of D from D = Iog(RB)/Iog(RL) agreed 
well with that obtained using box counting. However, 
the mass-shell method for both the fractal tree and the 
experimental pattern gave a mass of the pattern which 
grew exponentially with the radius, rather than the 
power-law dependence expected for a uniform fractals. 
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